
ON STAGNANT FLOW REGIONS OF A 

VISCOUS-PLASTIC MEDIUM IN PIPES 

(ozaamm?IzoNupI Tm?mIIAlrImwPLMTx~ 8RBDYvTRumai) 

PMM ~01.30, I4, 1966, pp. 705-717 

P.P.MOSOLW and V.P.W 

(Moacow) 

(Received December 27, 1965) 

In paper cl] the problem of established flow of an incompressible viscous- 
plastic medium ln pipes with arbitrary cross section was examined; theorems 
of existence and uniqueness of the solution were proven; a qualitative 
investigation of the flow character was carried out. Necessary and sufflcl- 
ent conditions of existence of motion with velocity different from zero were 
established. The existence of at least one rigid nucleus within the domain 
was proven. A sufficiently large class of cross sections was Isolated for 
which the nucleus Is unique, 

In this work two questions are examined which were not touched upon ln[l]: 

firstly, the existence of stagnant regions In flow through pipes; 

secondly, the mathematical side of the problem connected with the non- 
dlfferentlablllty of the functional under examination. 

The answer to the second question permits the conclusion that In the case 
under consideration, the equation of Euler remains valid only In regions 
where the solution has a velocity field gradient different from zero. In 
regions however where the solution has a constant value, Euler's equation Is 
replaced by some natural geometric conditions amenable to clear physical 
Interpretation. So, for example, such a condition for a rigid nucleus turns 
o_ut to be the dynamic condition of Its motion as a solid body. It should be 
noted that such conditions were earlier Introduced Into the problem as sup- 
plementary assumptions. 

An analogous situation exists also for stagnant regions. In Section 1 of 
this paper necessary and sufficient conditions are formulated which are 
satisfied by the function which mlnlmlses the initial functional. It Is 
shown that the boundaries of the stagnant regions are always curved towards 
the stagnant zone and at each point have a curvature no less than ~~/c 
while the boundaries of nuclei at points of bulging have, conversely, a Lur- 
vature no greater than To/a. 

In-Section 2 It Is shown that certain exact solutions for problems of 
mot&On of a viscous-plastic medium ln pipes actually minimize the correspond- 
ing functlonals. The possibility of existence of stagnant zones Is proven 
depending on geometrical pecullarltles of the boundary (corner points, 
regions with reduced width) 

Results from Section 3 of Cl] are frequently used in this paper. For this 
reason all notations adopted there are retained; Just as In the paper cl] 
all cumbersome proofs are placed In an appendix at the end of the paper. 
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1. Criterion ?or rrlrotion of true motion. We shall examine the func- 

tional 

(i.l) 

defined for functions u(~, u) which are continuous together with the flrrt 

partial derivatives within the confines of the bounded domain u and which 

satisfy the following boundary conditions on the boundary r of the lomain: 

'I /I- (P@-,Y) (1.2) 

In [l] it was shown that the function which describes the real motion of 

the viscous-plastic medium in the pipe with an arbitrary cross section, mlnl- 

mlzes the functional (1.1). 

The purpose of this section is to find effective conditions which permit 

a check that the specified sufficiently smooth function uO(x, y) subject to 

condition (1.2) minimizes the functional (1.1). 

Let u3 assume that the point set of the domain w , where IvuOl = 0 , 
represents the totality of closed nonintersecting domains AI,..., J', and 

81 ,..., B, where all A, are located strictly within w , while each P, has 

at least one common point with I-' . The boundary of the domain A, is desig- 

nated by u,, the boundary of the domain R, is designated by b, . With 

respect to u,(n, I/) it Is also assumed that It achieves its local maximum 

in each Al and that in the domain 0 , which is the part of the domain w 

where Ivucl>O , it is continuous together with Its derivatives through, 

inclusively, second order. In the following text we shall refer to domain 

Ai as nuclei of flow and to domains R, as stagnant zones. 

Necessary and sufficient conditions which must be satisfied by the func- 

tion minimizing the functional (1.1) can be formulated in the form of the 

following theorem. 

Theorem* 1.1 (criterion) (*) . For the function uO(x, y) to 

minimize functional (1.1) it. is necessary and sufficient that: 

1. 
\ 

In the region R the function u,,(x, y) 

\ 
\ CD 

I 

H Ai 
I 

satisfies Equation 

W 

LLAZ+, + z,, div IVu, / 1 Vu, 11 -I- c = 0 

4 

2. In each domain BJ, for any contour K which 

Is located in B, and which is the boundary for sub- 

domain ?? of domain B,, the following inequality 

holds (Fig.1) (**) 

7c mes L > c mes K* + ~~ mes y (K=L+r) 
Fig. 1 where y Is the part of contour Y which coincides 

*) F'roofs of Theorems and Lemmas designated by an asterisk are given In the 
appendix. 

:zi By m+ L , mes y and mes K* the corresponding length of lines L 
Y and the area of domain X are designated. 



With bj\r (*I. 
3. In'each domain Al the following relationships hold: 

a) TO mes Ui = c mes AI, (b) IS, mes K > c mesK* 

where K is an arbitrary contour lying in the domain A, and forming the 

boundary for sub-domain K* of the domain A,. 

While conditions 2 and 3 of the criterion have a purely geometrical char- 

acter they are difficult to verify by virtue of the arbitrariness of contour 

h' which enters -1n. Lemmas 1.1 and 1.2 make the practical utilization of 

the criterion substantially easier. These Lemmas isolate a comparatively 

narrow class of ccntours on which It is appropriate to check conditions 2 

and 3 of criterion. 

We shall examine domain D with boundary d . Let X be a contour loca- 

ted within the confines of region D and forming the boundary of sub-domain 

K* of domain D . 

Lemma* 1.1. Functional M(K) = z. mesK - cmesK* achieves 

its minimum on contour K' with the following properties. 

1. In internal points D the contour if' coincides with another peri- 

phery with radius %/C - 

2. Contour K’ can approach boundary d at a nonzero angle only at 

points where the boundary d is not smooth. 

Let the boundary d be representable In the form d = y + L where y 

is the totality of a finite number of smooth curves. Then the contour X 

examined above permits the representation I( = T + ? where 7 is part of y. 

Fig..2 pig. 3 Fig. 4 

Lemma 1.2 . Functional N(K)=z,mesT-~z,mes7-cm~1Y* 
attains its minimum on contov X' whd.ch has the properties 1 and 2 of Lem- 

ma 1.1. 

Proof of Lemma 1.2 is a word for word repetition of proof of Lemma 1.1. 

Conditions 2 and 3 of the criterion permit to draw certain conclusions 

with regard to geometrical peculiarities of boundaries of stagnant zones and 

") bi\ I' designates the set of points of curve b, which do not lie on P. 
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nuclei of flow. PIret of all, It Is completely obvious the'. none of the 

domains A, or j?, can contain a circle with a radius greJter than 27e/c . 
Secondly, It la easy to eee that bt\r Is concave with respect to region B,. 

In fact, let UB assume the opposite. Let us examine the contour 
K- " M,M*M, + [M,, MS1 (see Fig.2). It IB apparent that In this case 

mes ‘M,M*M& mesWl,M,l, contradicts condition 2 of criterion. Less 

apparent la the following property of the curve br\r. 

Theorem 1.2. If br\l' la a curve with continuously varying 

curvature x , then 1~1.5 o/r0 . 

Proof . Let us aaaume the opposite. Then a point A exists on 

bi\‘I’, where InI> u/~e . Let UB examine the vicinity of point N and 

Introduce In this vicinity new coordinates orienting the axis 0, along the 

tangent to the curve and the axie 0, along the normal. The origin of coor- 

dinates la aelected at the point M . The curve &\I’ In the vicinity of 

point Al can be represented In the form g = ai j- O(fl, a< c/ 22,. 

A periphery Is drawn with a radius T,,/o as Is ahown In FIg.3. We note 

that such construction Is possible for sufficiently small x0, namely,because 

of a < 0/2To . 

Ae contour K we select a contour consisting of an arc of periphery L 

and an arc of curve T . By X* we designate a domain bounded by contour 

x. It Is easy to find that 

mes K* = -4f+q,8- (TJC) z(j+ dz:/ 22,+ (T,/C)l ah-’ (cz~Izo)+o(z~) 

mes T = 22, + 4[f18zos + 0 (x0’) 

mes L = (2~~ / c) e-1 n (cq / zo) 

It follows from condition 2 of criterion that 

q,mesL> q,mesT + cmesK* (4 -3) 
Substituting Into this Inequality values found for me8 L , me8 7 and 

mes A"', we obtain 0 > (&T, - c)~s~~ f O(z,,‘), which Is Impoaelble for 

sufficiently small x0 . Theorem 1.2 Is proven. 

The following Theorem Is proven quite analogously. 

T h e o r e m 1.3 . If the boundary a, of the nucleus of flow A, at 

the point Al Is convex and the curvature x of the boundary Is continuous 

In M , then In II 
I4>ck 

In the proof of Theorem 1.3 Instead of condition (1.3) It Is appropriate 

to make use of the following InequalItIes which result from relationships 

(a) and (,b) of point 3 of the criterion 

x-Omesr’\<a-OmesL’ + cmesK’* 

Wotatione P', L’ and K’* are Indicated In FIg.4. 

Conditions 2 and 3 of Theorem 1.1 have a clear physical significance. If 

conditions for motion of the nucleus are set up as of a solid body without 
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acceleration, they will have the form 

T,,mesai = CmesAi 

It la clear that If conditions of equilibrium of all forces acting on the 

nucleus are fulfilled for the whole nucleus In Its entirety, then they mUSt 

be fulfilled a fortlorl for any of Its parts. An analogous situation exists 

also for stagnant zones. 

In this manner conditions 2 and 3 of Theorem 1.1 represent dynamic con- 

ditions for motion of nuclei and equilibria of stagnant zones. 

0. vWiii@Bt%on of hram mot rolutlonr. The criterion formulated In 
Section 1 for the selection of real motion of a viscous-plastic medium In 
pipes from all klneloatlcally possible motions permits verification of known 
points of solution [2 to 43. 

circular 
case iie z:cE :oiu&on'his tte following form (Flg.5): 

pipe [2] . Inthla 

--&- (RB - r*) for R,,<r<R 

+Ra- Rla) for 0 < r < RI 
(R, = +) (2.1) 

Condition 1 of Theorem 1.1 Is verified by direct substitution of uO(r) 
into the dlfferentlal equation. 
2 drops out. 

Since stagnant zones are absent, condition 

!Cheorem 1.1. 
Consequently, It IS necessary to check only condition 3 of 
In the case under examination the nucleus Is unique and Its 

boundary r Is a periphery of radius Rl 
that condition 3 of criterion 1.1 must be checked on two'contoura. 

Lem 1.1 permits the aErt...on 

these Is the periphery of radius rO/c 
radius 2%3/a . 

and the other 1s the periphery of 
In both cases condition 3 of Theorem 1.1 la satisfied. This 

ale.0 proves that function b(r) mlnlmlzes functional 1.1. 

Longitudinal motion 
The exact solution 1s given by the :o?low",n eq~attl~n"&~.6) 

U@== -$(Rl--r)+[++q]ln &+-&RI*_*) rot Rl<r<Rn, 

%I= $(r-Rd)+[-9-t$$]ln&+ f-(R4z-_r2) for RS<rgRd 

%=ff(R,- 
cR22 

Rz)+[+ + ~]l+ + -&(R+R2~) r~r RadrdRs 

~(R1-RR,)+[~+~]ln~+$(R~z-R~~)=~(R,_R,)+ 

+[-++q In $+ &RI'-RRs") RI-R2+ (2.2) 

Condition 1 1s checked exactly the same way by direct substitution Into 
EuleF's equation. 
Is ellmlnated. 

Stagnant zones are absent and condition 2 of Theorem 1.1 

contours. 
Condition 3 of criterion 1.1 must be verified again on two 

One contour Is a periphery with a radius rO/c which Is Inscribed 
with tangency into the nucleus Itself. The second contour consisting of two 
parts Is the boundary of the nucleus Itself. 
fulfilled, this proves that function uO 

In both cases condition 3 la 
(2.2) minimizes (1.1) 

3. Flow in nonclrcular p I p e s C4]. The solution 
for a pipe with noncircular cross section obtained In [4] mlnlmlzea func- 
tional (1.1). This fact la obtained fairly simply by utilizing Lemma 
but requires cumbersome computations which are omitted for the sake of 

1.1, 
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brevity. I& us approach the examination of stagnant zones. in [4] the 
exact solution u, is constructed In an angular domain (a > &) . In this 

case the function u. becomes zero 
(Flg.7) somewhere in the vicinity 
of the tip of the angle bounded by 
sides 0.4 , 0~ and the curve y . 
We draw a periphery with radius 
OR , with the center at the point 
0. The function I+ becomes zero 
on lines OR 

t 
and CM2 and takes 

the value cp X, I/) > 0 on the arc 
of periphery R1MR2 . 

We shall demonstrate that among 
all functions which become zero on 
radii Off, and ORa and are equal 
to i&c, p) on the arc Rx!@?,, the 

function W. gives the smallest value to the functional (1.1). To convince 
oneself of this It Is sufficient to verify conditions 1 and 2 of the crite- 
rion. &here are no nuclei of flow here, therefore condition 3 drops out. 
Condition 1 of criterion is easily verified by direct substitution of wa 
Into the corresponding differential equation. We shall check condition 2 of 
criterion. Since the radius of curvature R of curve y is equal to (7,/c) 
(1 + [4~ (B + CO.$CJI)]-1) (for notations see c4]), in the domain of the stag- 
nant zone It Is impossible to draw a periphery tangent to the boundaries of 
the stagnant zone. 

Utilizing the statement of Lemma 1.2 it is found that condition 2 of crl- 
terion must be checked only on two contours. 
sents the boundary of the stagnant zone, 

The first contour K1 repre- 

and represents the arc v 
the second contour K, is degenerate 

which is passed twice. We note that the fllrst 
contour is not external for functional N(X) ( see Lemma 1.2) since for con- 
tour K,- y + AQB (pig.71 

N(K1)-N(Kd==p (2ro(;;,Sina))-PP wt u), Pb 
TOP ---sina) 

csin a (2.3) 

and A'(&) 2 N(K,) . prom this It follows that lnf N(X) is achieved on a 
degenerate contour K, and Inf N(K) = 0 . Condition 2 of criterion has 
been verified. We note that solution ~0 in this case minimizes functional 
(1.1) not only in the sector under examination, 
sented in Flg.8a) if only the curve 

but also In the domaIn repre- 
L does not touch the boundary y . 

In this manner the outer boundary of the stagnant zone can be deformed In 
an arbitrary manner within the sector without touching the boundary y 
while the solution ua In the flow domain will remain unchanging. We c& also 
examine the growth of stagnant zone (Fig.8, b) which preserves solution u0 
unchanged in the dolnain of the flow. The boundary L ln this case is not 
arbitr 
L (Pig. YY 

but for example such that in the domain bounded by curves v and 
b) it Is not possible to draw a periphery with a radius 70/e 

which touihes the boundaries. For such choice of L condition 2 of crite- 
rion is verified In an obvious manner with utilization of Lemma 1.2. This 
Indicates that the region between y 
of flow. 

and L (Pig.8, b) Is a stagnant zone 

The solution found In the angular domain permits to find the exact 
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solution uc In the domain represented in Plg.9. Solution w0 becomes zero 
on segment RIT , A,‘T , R2S and ,9,'.C and it becomes rp(x, I/) on arcs of 
peripheries R,R2 and RI ‘R2’. The domain represented lb Fig.9 Is obtained 
by superpocltlon of sectors (Flg.7) on one another. It In appropriate to 
note that superposition of sectors must not be very large If It IS required 
to keep the flow domain unchanged. For example, If the sectors are superlm- 
posed such that the curves y in the upper and lower sector touch (Flg.lO), 
then In this case the distribution changes In the flow dlmaln because domain 
Y bounded by the broken line ATA’ and two segments (AC, AC’) of curve y 
does not satisfy condition 2 of the criterion 

T,mes(ATA')- 7,mes(ACA')- cmesK<O 

Fig. 9 

Fig. 12 

Fig. 10 

Fig. 13 

Fig. 11 

Fig. 14 

We denote the quantity OT in Fig.10 by X . Then It follows from Lem- 
ma 1.2 and relationship (2.3) that the region of flow will remain Invariant 
If 

I- sina 
2pto cosa - cpa,a-22hzo+h2csina>0, O<?"<hl 

In the following only such superpositions of sectors are examined for 
which the stagnant Lone takes up the domain between curves y In the upper 
and lower sectors (Flg.10). We shall demonstrate now that for steady flow 
of a viscous-plastic medium In cyllndrlcal tubes with arbitrary cross section, 
statlonary.zonen can exist, I.e. zones adjacent to tube walls where the velo- 
city Is equal to zero. This fact will follow from the majorlzlng principle 
presented In cl] be two plane domains and domain 
part of tug. L.ec Ftanzl Fdbew&nctlons mlnlmlzlng functional (I.?) i: 
the domains UJ~ and IuJ~, res;ectively. Then 0 zz uls ua In I.u~. We shall 
assume that the bounded domain UI is located within the obtuse angle. We 
shall examine a sector OR R, of sufficiently large radius so that UJ Is 
located within the sector tFlg.11). 

Let us examine function ua constructed In [4] for the angle. From the 
majorlzatlon principle It follows that u i uc, where u is a function 
mlnimlzlng functional (1.1) In u) and becoming zero at the boundary f of 
the domain UJ . 
(FQ.ll), u 

However, since uc Is equal to zero below the curve y 
also becomes zero In UJ everywhere below the curve y If 

curve y crosses the domain UJ . Thus, In this case In the domain u) there 
exists a stagnant zone taking up at least the domain hatched In Flg.11. 
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It follows from presented arguments that if UJ has a corner point and can 
be located in the obtuse angle with apex in the corner point of ut (for ex- 
ample u) Is convex), then a stagnant zone exists in the domain IN (Flg.12). 
After the existence of the stagnant zone has been established in the domain 
UJ , it is natural to attempt to find the greatest poaaible subdomain of 
domain w which will Sit into the stagnant zone. In a number of cases this 
can be achieved by transposing the sector so that its apex moves In the stag- 
nant zone of domain IU . !Thlo motion of the sector over the stagnant zone 
is represented In Flg.13. 

We shall examine another interesting case of stagnant zones having the 
character of cross members separating two or several regions of Slow (Pig. 
14). The existence of such stagnant zones Sollows from the exact solution 
constructed in the domain AITR1'Rp'SRp presented 3.n Fig.9 and the majorizlng 
principle. Additional examination of dimensions of the stagnant zone can be 
carried out by the method presented above. In conclusion we note a simple 
sufficient condition for the absence OS a stagnant zone In the vialnlty of a 
boundary point. If the boundary point can be touched by a circle of radius 
27,,/c which Is located completely In the domain w , then In the vicinity 
of this point a stagnant zone is nvt present. This autficient udi%iOn is 
a trivial consequence of the majorizdng principle and the exact solution 
examined in Section 2, point 1. 

Awdlix. At first we shall establish some awdliary statesnts. 

Definition A function uc which satlaflee (1.2) gives weak 
minimum of functional (111) If for any smooth function h, hlT - 0 there 2s 
a value kg such that all X, 1x1 +Z Xc 

J &I+ AA) >,J (88) (A.%) 

Lemma A.1. If vc gives a weak minimum to functional (l.l), then 
ug Is a function glvlng an absolute minlm~m to SUnct%onal in:lyY , where 

Proof . By virtue of convexity OS functional (1.1) we have the 
inequality 

J (ug -t- h (% - uo))~~((vof+hIJ(~a)--(~o)t, CGkG:i (A-2) 

Let us select a smooth SUnction h, h/T - 0 and such that 

s 
IIv(~-(~o--Lco))IS+~~--_~o-~o)l~~~<~ (A.3) 

0 

Then 

i~(~~)-~(~o+~(~-(~o- %)))I=\ 1 @PV(A-(ze- uO))Vvo+ 
0 

+h'~IG(h-((n~-uUp))l~+~0IVv0I-'01v(D0t-h(~-(~0-uo)))1- 

Since 
- Ch(A-(we- UO)))da I 

IS 

* 
~I6vul--Itr~~oiX(~-~~o- ~~~)~l~~l~l~l slv~~-t~~-~))l~~ 

it there&e Sollows from (A.3) that 
0 

IJ (Q) - J(U,+h(h-((Ug-u3))IdI~l~K (A.9 

where K IS independent of A and (I . We have SUrther from (A.2) that 

f f&J > li fJ().@) - J(t$)l+ J (ug + h (no - uo)) z h IJ (PO) -J (%)I + 
+ 2f fro + l/~~~) - J(v@+ R(h - (VO - Us))) ),A [J (PC) - $(%)I -I- 
+ 2f (YO + '/&A) - J (270) - 1 J (V*) - J (Vo + x fh - (Vo - em I 2 

> h (J (VJ + J (uo)l + 2J (vg + w4 - J (Ve) - ?a 

Consequently 
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J f 4 > (“i&) IJ (4 - J (U@) I + J (va + ‘/&) - ‘1,~~~ 
If J(Q) > J(a) then 6 can be selected so small th&t we will have 

.r(rc.) - J(u~) > 293~ then for all A(0 i X ZG 1) 

J (vu) > J (ve + 'l&4 (A.5) 

Inequality (A.5) contradicts (A.l), consequently J(u,) = J(N) Prom 
the theorem of uniqueness [lj It follows that ug= uc . The Lemm% has been 
proven. 

Lemma A2. If functional (1.1) has a critical point rt,, then 
uO= u0 where u0 is a function which minimizes functional (1.1). 

Proof . Let v. be a critical point, then 

lim J (110 -t- h(vo- %o)) - J (ro) 

h++0 
k 

=o (AX) 

However, f to, + h (2.$) - u(J) = J (he + (1 - h) VIJ) < hf (4 + (1 - A) J f%). 

i.e. J (2.0 + h (U@ - uo)f - J (210) f h iJ (4 - J (41 < 0 

Consequently 
J(s0 + ~(~o-- ro))- J(so) 

lim - <J(uo)---J(Q)<0 
).-+A0 I. 

The last inequality contradicts (l.t;), if ug #vc . Lemma A2 is Proven. 

Lemma A3 f”) . For the inequality 

+7hIdo++ds>e~Mo (A.71 
0 r IO 

to be applicable for any smooth h(x, p) , it is necessary and sufficient 

i*r,mesr = c meso, Z"vemeslT' >,cmeso' 

where w' is an arbitrary sub-domain of domain UI and f' is the boundary 
of Is'. 

Proof Necessity Condition 1 follows from (A.7) If we 
write h(x, a/)'- X is a constant. L& us examine %n arbitrary sub-domain 
IN' of domain UJ with the boundary P'. Let I" have a finite curvature In 
all points. Then in some neighborhood of this boundary O,(f') we can intro- 
duce a curvilinear system of coordinates uskg as one variable 8 the length 
of the arc along f' and as the other variable IL the length of segment 
normal to f'. !J!he boundary of 0,(I") 
Let us amname that a,@0 for j - m 

Is made up of lines n (8) - f a$. 
and that P* Is lmbeddeh in UJ 

together with Q (P'), starting with 80%~ j . I& us examlne In u1 the 
sequence of.,func ions c VI equal to unity In o'\oj(r') and to zero In 

In O,(P ) function v) Is a monotonous function of variable 

lim 1 VtrjIdo=mesr', 
s 

lim 
i*, 

(A.81 
B-xn s 

vi do= meso' 

Condition 2 of Lemms follows from (A.7) and@(A.S) It is easy to see 
that the condition of finite curvature and lmbeddlng'are unessential. Neces- 
sity of conditions 1 and 2 is proven. 

Sufficiency . It Is sufficient to establish inequality (A.7) 
for arbitrary polynomials. Let 4(x, g) be a polynomial; then It has only 
a finite number of level lines passing through singular points where 

Level lines Q passing through singular points will be called 
other level lines will be called nonsingular. 

*) Leamnss used In the proof and notations A \ B, A UBand UpA, used in 
examinations below [7] as usual denote the difference In sets A and B, 
the sum of sets A and B and the sum of the family of sets A,,respectlvely. 
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Let us examine a nonslngular line of level L,, the value on which 1s 
equal to p (Q(LJ= p). In some v;;pl;y of L, we can Introduce a curvl- 
linear system of coordinates s In she manner Indicated above. In 
this vicinity we take the level line $+np* the equation for which Is 
n = n(s) > 0 . It will be assumed here that for fixed s the quantity 
Q(n, s) Is nondecreaslng function of n for 0 5 n s (8) . 

The set of points In the neighborhood under examination which belong to 
w and are such that for them 0 i n i n(s) will be denoted by e$,.s+~p. 
It Is easy to see that the domain UJ can be'stratlfied Into sub-domains of 
the type ap,s+hn, with accuracy to a polynomial of a degree as small as 
desired, I.e. 

%= uQ+AP, mss Ia\ meI<& 
P 

where e - 0 for 
;;ln;ldlng with L,, 

n(s) - 0 . Through _Ko we designate a closed contour 
If L, IS an oval lying in UJ and Ks=L,-, i- Y 7 and 

with Its ends comes out on the boundary f of domain w . 
Is th% part of boundary f which connects the ends of L 

& 
where Q 

ere Yp 
(Y ) >, P. 

BY up we shall designate a sub-domain of w which Is b!%nded by co&our 

%' Since 
~0 mes K, > c mes up 

then 
zo Imes L, + mes r,l IQ (Lp+Ap) - Q $,)I >, c mes up IQ (LA,+,) - Q &JJ (A.91 

We note that 

. 
To mss L, IQ (Lp+,p 1-Q (L,)1=~o 

%, tJ+Ap 
S~mmlng (A.9) with respect to p we obtain 

2 mes up [Q (L,+& - Q @,)I = 5 iQ (I, Y) - ‘,“f Q @, ~11 do + 0 (n (s)) 

i 

0 

m=T, IQ W,+A,, ) - Q (.$)I = 1 CQ (2, Y) - i;f Q (% ~11 ds + 0 (n (8)) 

P I 

2 mes L, [Q (J$+~~ I- Q @,)I d s I OQ I do + 0 (n (~1) 
P 0 

Consequently, 

TO $IVQId@+ro~Qds>c~Qdco+roirnfQmesr-ci$Qmesco 
u r (D 

From condition 1 of Lesnna 

t@fpfQmesI’- cinfQmeso>infQ [zomesr-cmesw]=O 
t# (d 

In this fashion Lemma A.3 has been proven. 

Let the domain w be bounded by contour R and I) = f + y where y 
are some smooth curves consisting, generally speaking, of a finite number 
of connected components. 

Lemma A.4. For the Inequality 

TO 1 IVhjdo-to~hds>e 1 hdo (A.lO) 

0 Y (0 
to be satlsfled for all smooth h , which become zero on P , the fulfillment 
of the ;ollowlng condition Is ,“;xz;;sary and sufficient: for any closed con- 
tour R - P'+ y lying In w Y Is part of v the Inequality 

5 mes r’ - ~,mesy’>/c mesa’ (A.14) 

applies, where w' 1s a sub-domain of w bounded by the contour R'. 

Proof . Necessity . In analogy to Lemma A.3 we construct 
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a step-wise function which is the limit of 
and equal to zero outside the contour R'., 

v,,equal to 1 In the domain UI' 
Substituting this function into 

(A.lO) we obtain condition (A.ll). We shall demonstrate this. Let r' be 
a smooth curve; 
dinates (8, n) . 

In Its vicinity 0 (f') we shall Introduce curvlllnear coor- 
Boundary of Q,(I") are the lines h-fa - 0 for 

3 Let us examine a sequence of functions U,(X, 
ami a1 

unit", in o'\Q,(r') and to zero in o\[a',Uf~(r')]. 
I/) which are equal to 

are monotone fu&ctlons of variable n . 
In O,(f') functions u, 

lim ) VojIdo=mesr’, 
s 

lim 
j-MO s 

lim 

a jeY 
vi ds - mes f, 

j-+00 s 
vi do = mes o’ (A.12) 

a 

Comparing (A.12) with (A.lO) we obtain (A.ll). 'Ihe necessary condition 
has been proven. 

Sufficiency We note [5] that It Is sufficient to establish 
the Inequality (A.lO) on functions (*) from VP'(u)) (p > 2) Positive in UI 
and becoming zero on f . 
Qnl(x, y) in the metric 

Let us approximate such a function by a polynomial 
J&l(m) . 

that Qnl 
From theorems of lmbeddlng [5] It follows 

converges to h uniformly, i.e. 

IQTI' --h& s ,v(Q,‘---h)ldo <; 
IO 

(A.13) 

Let us examine the polynomial Q.= Qil- l/n . It Is clear that 0,~ 0 
on r . 

From the polynomial Q. we make the transition to function Q,* 

Q,,*=O for Q, GO, Q,' = Q, for Q,>O 
We shall demonstrate that for Q.* evaluations 

applicable. 'Ihe set where Qm*- 
We shall,,de~~~~~ra~~;~~ In thz di&T???: %ensjQ?- h( < lno\S 

ine the set 
) that mes{s,n suppIf)+O for n 

empty set and 
a,={(2,y)lhl<Z/n)nsupp). Then lia A.= Q, , where (0 Is an 
&a&+ .*Consequentiy mes A.- 0 for n - m . 

A,Zs,nsupp h. In this manner mes{S, n supp h} 40 
But 

for n - 0 . Thus it 
follows from (A.13) directly that 

lh-Q,,*I+O, s IV+--Q,,*)Ido+O for n + 00 (A.14) 

u 

Utilizing relationship (A.ll) we establish the Inequality (A.30) for Qa+. 
Let us examine a nonsingular line of polynomial Q. In the domain U/S, . 

As usual, we Introduce curvilinear coordinates In the vicinity of this 
level line. In analogy to Lemma A.3 we stratify the domain o\& with 
accuracy to a set of degree E on the sub-domain of the form e.$,s+~p' We 
shall examine the contour K,, which surrounds the domain up, located In 
o\S,. Then 

‘F~ mes Lp - 7. mes y, > c mes up 

where Yp Is the part of contour $,,whlch coincides with part v . Then 
repeating the steps carried out In Lemma A.3 and noting that 

o\& and lnf 4.1 0 on vn 
lnf Q.=O on 

we arrive at the inequality 

'FO 
s 

lVQ,,Ido---0 (A.45) 

m\s, 
5 Q,ds>c 5 Q,,do 

Y7l @\S, 

where v. Is part of v 
coincides with 

which Is a piece of the boundary 0 \&I. Since Q,,* 

inequality 
o\S, and Is equal to zero on -C,,, It follows from 

*) The symbol W,l(u)) denotes a set of functions In the domain c which 
have first derivatives integrable with the degree p . 
**) The notation suPp h as usual applies to the carrier of the function 
h , I.e. the set of points of the plane where h # 0 . 
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70 5 IvQn*id@--0 s Qn*ds>c s Qn*tJo (A.i6) 
u Y 0 

Relationship (A.10) follows from inequality (A.161 and reIationshWs 
(A.14) 

Proof of Theorem 1.1. Let us earnine an Increment of 
functional (1.1). Then 

AJ=J(u,+~~)--J(~)= 

- St W+A7h+ ~1V~l"fro~V~s+U)~-+olvuo_ehh)do 

Let a1 d:note a domain where iv %\>ha, a<lf2. The increment AJ 1s 
written In the form 

Noting that mes(o\(oxlJ8)>~0 for 1 - 0 ad that 

f~Ovluo+~~~l-iv~l~do~~IliI~IVAldw 
m (0 

we obtain 

TransformUg the last integral In (A.171 

VICB‘Ohi-S.*lVh I*- WVuoVI?) dm 
Oh 

We apparently obtain 

s 

h2 I Vh I2 
~~iV(~+~h~i+lV~ol do=o(h) 

V~Vh{--kZ IVhI~--ZhV~oV4 

Then 

(AA?) 

s 
-a % 

where Sk is a contour surrounding WA, WUOI 1 Vuol)f, is the projection 
of the vector on the direction of the external normal to S,. In this manner 
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AJ=- chh do + 

WA a 

+\rolVhWo+ \“-I so IVUOI nds+o(h) 
n 

We note that if point SA for X - 0 approaches a point on the boundary 
4 of the nucleus of flow A,, then (Vu,,/ IVuoI)ln+ 1; If however the point Sk 
for x - 0 approaches a point on the boundary b, of the stagnant zone BI, 
then (VU~/I Vu0 i)ln-* - 1. Consequently, 

j,+$ lnds-[ \ hds- 1 hds]+O for h+O 

{a. 
Thu3, 

1' 
i bi 

VJ=- \ {pAw+div a+ c}hhdo-_cchhdo-_ccLhdo 

93 

We shall prove the necessity of conditions-l, 2 and 3 of criterion. Let 
us take h , coxentrated In 61~; then 

VJ=- ” 
\-I 

vu0 
PA%_+ div I vuo ,- + c} hh da + o (h) 2 o 

Oh 
(A.19) 

From (A.19) It follows that 

yVuo+div~V~o/lVuoII+c=~ a 0~ (A.20) 

Since A in (A.20) Is arbitrary, the necessity of 1 Is proven. Conse- 
quently, 

VJ=-j$o 1 IVlhIdo+r+hds-cc Ah&]+ 
1 Ai ai Ai 

-$po ~ilVMldw--ro 1 hhds-- 1 hhdo]+o(h) 
1 

bi Bi 

(A.21) 

From (A.21) we have 

to IVhhIdo+rr, hhds-c hhdo>O 
s s s 

(i=l,...,s) 

4i a.; Ai 

10 1 @hIdo--0 hhds-c I&do>0 
s s s 

(i=l,. . ., p) (A.2) 
Bi bi ‘i 

Lemmas A.3 and A.4 confirm that conditions 2 and 3 of criterion result 
from Inequality (A.22). The necessity of conditions Is proven. 

Sufficiency Let conditions 1, 2 and 3 of criterion be ful- 
filled. Then we have from'lenunas A.3 and A.4 and the representation of the 
reansformatlon of functional (A.I~) 

J (u,, + ML) - J (4 + 0 04 > 0 
From this It follows that U0 is either a critical point of functional 

ii,;) ; It produces a weak minimum. From Lemmas A.1 and A.2 It followsThe 
In these cases gives sn absolute minimum of functional (1.1). 

criterl& has been proven. 

Proof Lemma 1.1. 
below because yn', M(r) 

Functional X(K) Is bounded from 
2 -mesD . By virtue of compactness of a set of 
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curves with limited length there exists a contour K' for which InP H(K) = 
- N(K’). Evidently contour X' is convex at inter- 
nal points I) . Let us examine three sufficiently 
closely situated intern& points H,:, JtY,' and N,'+.'reglon _ 

Pig. 15 

zomes(M1'MB"Ms')- cmes Kx” > “~0 mes (M1'Ms'Ms')- cmesh;' 

Thus, if a new system of coordinates is Introduced orienting the axls 0, 
along the segment [t, , 
origin in point M, 

1y3'], the ax56 0, perpendicular and locating the 
then the arc Ml’, N,‘, MS’ minimizes the integral 

x 

s (To VI + Yla - CY) ab (X=mes[Ml'M;I]) 
n 

for conditions ~(0) = 0; I/ (mes IM,‘.MS’l) = 0. It is easy to verify that 
cxtremals of functional ‘(i.23) are‘per&eries with a radius rJo_. Con- 
firmation of contact between K‘ and d can be obtained directly utilizing 
the well-known theorem on one-sided variations [6]. Lemma 1.1 is proven. 
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