ON STAGNANT FLOW REGIONS OF A VISCOUS-PLASIIC MEDIUM IN PIPES

PMM Vol.30, NQ 4, 1966, pp. 705-717
P.P.MOSOLOV and V.P.MIASNIKOV
(Moscow)
(Received December 27, 1965)

Abstract

In paper [1] the problem of established flow of an incompressible viscousplastic medium in pipes with arbitrary cross section was examined; theorems of existence and uniqueness of the solution were proven; a qualitative investigation of the flow character was carried out. Necessary and sufficient conditions of existence of motion with velocity different from zero were established. The existence of at least one rigid nucleus within the domain was proven. A sufficiently large class of cross sections was isolated for which the nucleus is unique,

In this work two questions are examined which were not touched upon in [1]: firstly, the existence of stagnant regions in flow through pipes; secondly, the mathematical side of the problem connected with the nondifferentiability of the functional under examination.
The answer to the second question permits the conclusion that in the case under consideration, the equation of Euler remains valid only in regions where the solution has a velocity field gradient different from zero. In regions however where the solution has a constant value, Euler's equation is replaced by some natural geometric conditions amenable to clear physical interpretation. So, for example, such a condition for a rigid nucleus turns out to be the dynamic condition of its motion as a solid body. It should be noted that such conditions were earlier introduced into the problem as supplementary assumptions.

An analogous situation exists also for stagnant regions. In Section 1 of this paper necessary and sufficient conditions are formulated which are satisfied by the function which minimizes the initial functional. It is shown that the boundaries of the stagnant regions are always curved towards the stagnant zone and at each point have a curvature no less than T_{0} / c, while the boundaries of nuclei at points of bulging have, conversely, a curvature no greater than T_{0} / c.

In Section 2 it is shown that certain exact solutions for problems of motion of a viscous-plastic medium in pipes actually minimize the corresponding functionals. The possibility of existence of stagnant zones is proven depending on geometrical peculiarities of the boundary (corner points, regions with reduced width)

Results from Section 3 of [1] are frequently used in this paper. For this reason all notations adopted there are retained; just as in the paper [1] all cumbersome proofs are placed in an appendix at the end of the paper.

1. Criterion for seleotion of true motion. We shall examine the functional

$$
\begin{equation*}
J(u)=\int_{\omega}^{0}\left\{\left.\frac{\mu}{2}(\nabla u)^{2}+\tau_{0}|\nabla u|-c u \right\rvert\, d 0\right. \tag{1.1}
\end{equation*}
$$

defined for functions $u(x, y)$ which are continuous together with the firet partial derivatives within the confines of the bounded domain u and which satisfy tise following boundary conditions on the boundary I of the domain:

$$
\begin{equation*}
u \mid \Gamma \cdots \varphi(x, y) \tag{1.2}
\end{equation*}
$$

In [1] it was shown that the function which describes the real motion of the viscous-plastic medium in the pipe with an arbitrary cross section, minlmizes the functional (1.1).

The purpose of this section is to find effective conditions which permit a check that the specified sufficiently smooth function $u_{0}(x, y)$ subject to condition (1.2) minimizes the functional (1.1).

Let us assume that the point set of the domain w, where $\left|\nabla u_{0}\right|=0$, represents the totality of closed nonintersecting domains A_{1}, \ldots, A_{1} and B_{1}, \ldots, B_{p} where all A_{1} are located strictly within ω, while each p_{1} has at least one common point with Γ. The boundary of the domain A_{1} is desicnated by a_{1}, the boundary of the domain R_{1} is designated by b_{1}. With respect to $u_{0}(x, y)$ it is also assumed that it achieves its local maximum in each A_{1} and that in the domain Ω, which is the part of the domain ω where $\left|\nabla u_{0}\right|>0$, it is continuous together with its derivatives through, inclusively, second order. In the following text we shall refer to domain A_{1} as nuclei of flow and to domains B_{1} as stagnant zones.

Necessary and sufficient conditions which must be satisfied by the function minimizing the functional (1.1) can be formulated in the form of the following theorem.

Theorem \quad (.1 (criterion) (*). For the function $u_{0}(x, y)$ to minimize functional (1.1) it is necessary and sufficient that:

Fig. 1

1. In the region Ω the function $u_{0}(x, y)$ satisfies Equation

$$
u \Delta u_{0}+\tau_{0} \operatorname{div}\left[\nabla u_{0} /\left|\nabla u_{0}\right|\right]+c=0
$$

2. In each domain B_{j}, for any contour K which is located in B_{J} and which is the boundary for subdomain K^{*} of domain B_{J}, the following inequality holds (Fig.1) (**)
$\tau_{0} \operatorname{mes} L \geqslant c \operatorname{mes} K^{*}+\tau_{0} \operatorname{mes} \gamma \quad(K=L+\gamma)$ where γ is the part of contour K which coincides

[^0]with $b_{j} \backslash \Gamma\left(^{*}\right)$.
3. In each domain $A_{:}$the following relationships hold:
a) $\quad \tau_{0} \operatorname{mes} a_{i}=c \operatorname{mes} A_{i}$,
(b) $\tau_{0} \operatorname{mes} K \geqslant c \operatorname{mes} K^{*}$
where K is an arbitrary contour lying in the domain A_{1} and forming the boundary for sub-domain K^{*} of the domain A_{1}.

While conditions 2 and 3 of the criterion have a purely geometrical character they are difficult to verify by virtue of the arbitrariness of contour K which enters In. Lemmas 1.1 and 1.2 make the practical utilization of the criterion substantially easier. These Lemmas isolate a comparatively narrow class of centours on which it is appropriate to check conditions 2 and 3 of criterion.

We shall examine domain D with boundary d. Let K be a contour located within the confines of region D and forming the boundary of sub-domain K^{*} of domain D.

Lemma * 1.1 . Functional $M(K)=\tau_{0}$ mes $K-c$ mes K^{*} achieves its minimum on contour $K^{\prime \prime}$ with the following properties.

1. In internal points D the contour K^{\prime} coincides with another periphery with radius T_{0} / c.
2. Contour K^{\prime} can approach boundary d at a nonzero angle only at points where the boundary d is not smooth.

Let the boundary d be representable in the form $d=\gamma+L$ where γ is the totality of a finite number of smooth curves. Then the contour K examined above permits the representation $K=T+T$ where T is part of γ.

Fig. . 2

Fig. 3

Fig. 4

Lemma 1.2 . Functional $N(K)=\tau_{0} \operatorname{mes} T-\tau_{0} \operatorname{mes} \tau-c \operatorname{mes} K^{*}$ attains its minimum on contour K^{\prime} which has the properties 1 and 2 of Lemma 1.1.

Proof of Lemma 1.2 is a word for word repetition of proof of Lemma 1.1.
Conditions 2 and 3 of the criterion permit to draw certain conciusions with regard to geometrical peculiarities of boundaries of stagnant zones and
*) $b_{i} \backslash \Gamma$ designates the set of points of curve b_{i} which do not lie on Γ.
nuclei of flow. First of all, it is completely obvious the', none of the domains A_{1} or B_{1} can contain a circle with a radius greiter than $2 T_{0} / C$. Secondly, it is easy to see that $b_{i} \backslash \Gamma$ is concave with respect to region B_{1}.

In fact, let us assume the opposite. Let us examine the contour $K={ }^{*} M_{1} M^{*} M_{2}+\left[M_{1}, M_{2}\right]$ (see Fig.2). It is apparent that in this case mes ${ }^{`} M_{1} M^{+} M_{2}>\operatorname{mes}\left[M_{1}, M_{9}\right]$, contradicts condition 2 of criterion. Less apparent is the following property of the curve $b_{i} \backslash \Gamma$.

Theorem 1.2. If $b_{i} \backslash \Gamma$ is a curve with continuously varying curvature x, then $|x| \leq 0 / r_{0}$.
$P r \circ o f$. Let us assume the opposite. Then a point N exists on $b_{i} \backslash \Gamma$, where $|x|>0 / T_{0}$. Let us examine the vicinity of point N and introduce in this vicinity new coordinates orienting the axis 0_{x} along the tangent to the curve and the axis 0, along the normal. The origin of coordinates is selected at the point N. The curve $b_{i} \backslash \Gamma$ in the vicinity of point N can be represented in the form $y=a x^{2}+O\left(x^{s}\right), a<c / 2 \tau_{0}$. A periphery $1 s$ drawn with a radius $\tau_{0} / 0$ as is shown in Fig. 3 . We note that such construction is possible for sufficiently small x_{0}, namely, because of $a<0 / 2 T_{0}$.

As contour K we select a contour consisting of an arc of periphery L and an arc of curve T. By K^{*} we designate a domain bounded by contour K. It is easy to find that

$$
\begin{gathered}
\text { mes } K^{*}=-4 /{ }_{3} a x_{0}{ }^{8}-\left(\tau_{0} / c\right) x_{0}+c x_{0}{ }^{8} / 2 \tau_{0}+\left(\tau_{0} / c\right)^{2} \quad \text { inn-1 }\left(c x_{0} / \tau_{0}\right)+O\left(x_{0}^{4}\right) \\
\operatorname{mes} \tau=2 x_{0}+4 /{ }_{3} a^{2} x_{0}^{3}+O\left(x_{0}^{4}\right) \\
\operatorname{mes} L=\left(2 \tau_{0} / c\right) \quad \sin ^{-1} \mathrm{n}\left(c x_{0} / \tau_{0}\right)
\end{gathered}
$$

It follows from condition 2 of criterion that

$$
\begin{equation*}
\tau_{0} \operatorname{mes} L \geqslant \tau_{0} \operatorname{mes} \tau+c \operatorname{mes} K^{*} \tag{1.3}
\end{equation*}
$$

Substituting into this inequality values found for mes L, mes T and mes X^{*}, we obtain $O \geqslant\left(2 a \tau_{0}-c\right)^{2} x_{0}{ }^{3}+O\left(x_{0}{ }^{4}\right)$, which is impossible for sufficiently small x_{0}. Theorem 1.2 is proven.

The following Theorem is proven quite analogously.
Theorem 1.3. If the boundary a_{1} of the nucleus of flow A_{1} at the point N is convex and the curvature x of the boundary is continuous in N, then in N

$$
|x|>c / \tau_{0}
$$

In the proof of Theorem 1.3 instead of condition (1.3) it is appropriate to make use of the following inequalities which result from relationships (a) and (b) of point 3 of the criterion

$$
\tau_{0} \operatorname{mes} \Gamma^{\prime} \leqslant \tau_{0} \operatorname{mes} L^{\prime}+c \operatorname{mes} K^{\prime *}
$$

Notations $\Gamma^{\prime}, L^{\prime}$ and $K^{\prime *}$ are indicated in Fig. 4.
Conditions 2 and 3 of Theorem 1.1 have a clear physical significance. If conditions for motion of the nucleus are set up as of a solid body without
acceleration, they will have the form

$$
\tau_{0} \text { mes } a_{i}=c \text { mes } A_{i}
$$

It is clear that if conditions of equilibrium of all forces acting on the nucleus are fulfilled for the whole nucleus in its entirety, then they must be fulfilled a fortiori for any of its parts. An analogous situation exists also for stagnant zones.

In this manner conditions 2 and 3 of Theorem 1.1 represent dynamic conditions for motion of nuclei and equilibria of stagnant zones.
2. Vorification of known amot nolutions. The criterion formulated in Section 1 for the selection of real motion of a viscous-plastic medium in pipes from all kinematically possible motions permits verification of known points of solution [2 to 4].

1. Motion in a circular pipe[2]. In this case the exact solution has the following form (Fig.5):

$$
\begin{align*}
& u_{0}=\frac{\tau_{0}}{\mu} \ln \frac{r}{R}+\frac{c}{4 \mu}\left(R^{2}-r^{2}\right) \quad \text { for } \quad R_{1} \leqslant r \leqslant R \\
& u_{0}=\frac{\tau_{0}}{\mu} \ln \frac{R_{1}}{R}+\frac{c}{4 \mu}\left(R^{2}-R_{1}^{2}\right) \quad \text { for } \quad 0 \leqslant r \leqslant R_{1} \quad\left(R_{1}=\frac{2 \tau_{0}}{r}\right) \tag{2.1}
\end{align*}
$$

Condition 1 of Theorem 1.1 is verified by direct substitution of $u_{0}(r)$ into the differential equation. Since stagnant zones are absent, condition 2 drops out. Consequently, it is necessary to check only condition 3 of Theorem 1.1. In the case under examination the nucleus is unique and its boundary I is a periphery of radius R_{1}. Leman 1.1 permits the assertion that condition 3 of criterion 1.1 must be checked on two contours. One of these 18 the periphery of radius T_{0} / c and the other is the periphery of radius $2 \mathrm{~T}_{0} / \mathrm{c}$. In both cases condition 3 of Theorem 1.1 is satisfied. This also proves that function $u_{0}(r)$ minimizes functional 1.1.
2. Longitudinal motion in an ann ula \quad a $g a p-[3]$. The exact solution is given by the following equation (Fig.6)

$$
\begin{align*}
& u_{0}= \frac{\tau_{0}}{\mu}\left(R_{1}-r\right)+\left[\frac{\tau_{0} R_{2}}{\mu}+\frac{C R_{2}^{2}}{2 \mu}\right] \ln \frac{r}{R_{1}}+\frac{c}{4 \mu}\left(R_{1}^{2}-{ }^{2}\right) \quad \text { for } R_{1} \leqslant r \leqslant R_{2} \\
& u_{0}= \frac{\tau_{0}}{\mu}\left(r-R_{4}\right)+\left[\frac{\tau_{0} R_{3}}{\mu}+\frac{c R_{3}^{2}}{2 \mu}\right] \ln \frac{r}{R_{4}}+\frac{c}{4 \mu}\left(R_{4}^{2}-r^{2}\right) \quad \text { for } R_{3} \leqslant r \leqslant R_{4} \\
& u_{0}= \frac{\tau_{0}}{\mu}\left(R_{1}-R_{2}\right)+\left[\frac{\tau_{0} R_{2}}{\mu}+\frac{c R_{2}^{2}}{2 \mu}\right] \ln \frac{R_{2}}{R_{1}}+\frac{c}{4 \mu}\left(R_{1}^{2}-R_{2}^{2}\right) \quad \text { for } R_{2} \leqslant r \leqslant R_{3} \\
& \frac{\tau_{0}}{\mu}\left(R_{1}-R_{2}\right)+\left[\frac{\tau_{0} R_{2}}{\mu}+\frac{C R_{2}^{2}}{3 \mu}\right] \ln \frac{R_{2}}{R_{1}}+\frac{c}{4 \mu}\left(R_{1}^{2}-R_{2}^{2}\right)=\frac{\tau_{0}}{\mu}\left(R_{3}-R_{4}\right)+ \\
&+\left[-\frac{\tau_{0} R_{3}}{\mu}+\frac{c R_{8}^{3}}{2 \mu}\right] \ln \frac{R_{3}}{R_{4}}+\frac{C}{4 \mu}\left(R_{4}^{2}-R_{3^{2}}\right) \quad R_{8}-R_{2}=\frac{2 \tau_{0}}{c} \quad(2 . \tag{2.2}
\end{align*}
$$

Condition 1 is checked exactly the same way by direct substitution into Euler's equation. Stagnant zones are absent and condition 2 of Theorem 1.1 is eliminated. Condition 3 of criterion 1.1 must be verified again on two contours. One contour is a periphery with a radius $\mathrm{T}_{0} / \mathrm{o}$ which is inscribed with tangency into the nucleus itself. The second contour consisting of two parts is the boundary of the nucleus itself. In both cases condition 3 is fulfilled, this proves that function u_{0} (2.2) minimizes (1.1)
 for a pipe with noncircular cross section obtained in [4] minimizes functional (1.1). This fact is obtained fairly simply by utilizing Lemma 1.1, but requires cumbersome computations which are omitted for the sake of
brevity. Let us approach the examination of stagnant zones. in [4] the exact solution u_{0} is constructed in an angular domain ($\alpha>\frac{1}{4} \pi$). In this
 case the function u_{0} becomes zero (Fig.7) somewhere in the vicinity of the tip of the angle bounded by sides $O A, O B$ and the curve γ. We draw a periphery with radius $O R$, with the center at the point 0 . The function u_{0} becomes zero on lines $O P_{3}$ and $O A_{2}$ and takes the value $\varphi(x, y)>0$ on the arc of periphery $R_{1} M R_{z}$.

We shall demonstrate that among all functions which become zero on radi1 $O R_{1}$ and $O R_{2}$ and are equal to $\varphi(x, y)$ on the arc $R_{1} N R_{2}$, the function u_{0} gives the smallest value to the functional (1.1). To convince oneself of this it is sufficient to verify conditions 1 and 2 of the criterion. Mhere are no nuclei of flow here, therefore condition 3 drops out. Condition 1 of criterion is easily verified by direct substitution of u_{0} into the corresponding differential equation. We shall check condition 2 of criterion. Since the radius of curvature A of curve γ is equal to (τ_{0} / c) $\left\{1+\left[4 a\left(B+\cos ^{2} \varphi\right)\right]^{-1}\right\}$ (for notations see [4]), in the domain of the stagnant zone it is impossible to draw a periphery tangent to the boundaries of the stagnant zone.

Utilizing the statement of Lemma 1.2 it is found that condition 2 of criterion must be checked only on two contours. The first contour K_{1} represents the boundary of the stagnant zone, the second contour K_{2} is degenerate and represents the arc γ which is passed twice. We note that the first contour is not external for functional $N(K)$ (see Lemma 1.2) since for contour $K_{3}=\gamma+A P Q B$ (Fig.7)

$$
\begin{equation*}
\left.N\left(K_{1}\right)-N\left(K_{3}\right)=\rho\left(\frac{2 \tau_{0}(1-\sin \alpha)}{\cos \alpha}\right)-c \rho \cos \alpha\right), \quad \rho \leqslant \frac{\tau_{0}(1-\sin \alpha)}{c \sin \alpha} \tag{2.3}
\end{equation*}
$$

and $N\left(K_{1}\right) \geq N\left(K_{3}\right)$. From this it follows that inf $N(K)$ is achieved on a degenerate contour K_{a} and inf $N(K)=0$. Condition 2 of eriterion has been verified. We note that solution u_{0} in this case minimizes functional (1.1) not only in the sector under examination, but also in the domain represented in Fig. $8 a$) if only the curve L does not touch the boundary y.

Fig. 7

a)

Fig. 8
In this manner the outer boundary of the stagnant zone can be deformed in an arbitrary manner within the sector without touching the boundary r, while the solution v_{0} in the flow domain will remain unchanging. We can also examine the growth of stagnant zone (Fig. $8, \mathrm{~b}$) which preserves solution v_{0} unchanged in the domain of the flow. The boundary L in this case is not arbitrary, but for example such that in the domain bounded by curves y and L (Fig. $8, b$) it is not possible to draw a periphery with a radius T_{0} / o which touches the boundaries. For such choice of L condition 2 of criterion is verified in an obvious manner with utilization of Lemma 1.2. This indicates that the region between y and L (Fig. 8 , b) is a stagnant zone of flow.

The solution found in the angular domain permits to find the exact
solution u_{0} in the domain represented in Fig.9. Solution u_{0} becomes zero on segment $A_{1} T, A_{1}^{\prime} T, A_{2} S$, and $A_{2}{ }^{\prime} C$ and it becomes $\varphi(x, y)$ on arcs of peripheries $R_{1} A_{2}$ and $R_{1}^{\prime} R_{2}^{\prime}$. The domain represented ib $\operatorname{Fig} .9$ is obtained by superpocition of sectors (Fig.7) on one another. It in appropriate to note that superposition of sectors must not be very large if it is required to keep the flow domain unchanged. For example, if the sectors are superimposed such that the curves γ in the upper and lower sector touch (Fig.10), then in this case the distribution changes in the flow dimain because domain Y bounded by the broken line $A T A^{\prime}$ and two segments ($A C, A C^{\prime}$) of curve y does not satisfy condition 2 of the criterion

$$
\tau_{0} \operatorname{mes}\left(A T A^{\prime}\right)-\tau_{0} \operatorname{mes}\left(A C A^{\prime}\right)-c \operatorname{mes} K<0
$$

Fig. 9

Fig. 12

Fig. 10

Fig. 13

Fig. 11

Fig. 14

We denote the quantity $O T$ in Fig. 10 by λ. Then it follows from Lemma 1.2 and relationship (2.3) that the region of flow will remain invariant if

$$
2 \rho \tau_{0} \frac{1-\sin \alpha}{\cos \alpha}-c \rho^{2} \tan \alpha-2 \lambda \tau_{0}+\lambda^{2} c \sin \alpha>0, \quad 0<\lambda<\lambda_{1}
$$

In the following only such superpositions of sectors are examined for which the stagnant cone takes up the domain between curves γ in the upper and lower sectors (Fig.10). We shall demonstrate now that for steady flow of a viscous-plastic medium in cylindrical tubes with arbitrary cross section, stationary zones can exist, i.e. zones adjacent to tube walls where the velocity is equal to zero. This fact will follow from the majorizing principle presented in [1]. Let ω_{1} and ω_{2} be two plane domains and domain ω_{1} be part of ω_{2}. Let u_{1} and u_{2} be functions minimizing functional (1.1) in the domains ω_{1} and ω_{2}, respectively. Then $0 \leq u_{1} \leq u_{a}$ in ω_{1}. We shall assume that the bounded domain w is located within the obtuse angle. We shall examine a sector $O R_{1} R_{2}$ of sufficiently large radius so that ω is located within the sector (Fig.11).

Let us examine function u_{0} constructed in [4] for the angle. From the majorization principle it foliows that $u \leq u_{0}$, where u is a function minimizine functional (1.1) in ω and becoming zero at the boundary Γ of
 curve γ crosses the domain w. Thus, in this case in the domain ${ }^{\gamma} \omega$ there exists a stagnant zone taking up at least the domain hatched in Fig.il.

It follows from presented arguments that if w has a corner point and can be located in the obtuse angle with apex in the corner point of w (for example w is convex), then a stagnant zone exists in the domain w (Fig.12). After the existence of the stagnant zone has been established in the domain ω, it is natural to attempt to find the greatest possible subdomain of domain which will fit into the atagnant zone. In a number of cases this can be achieved by transposing the sector so that its apex moves in the stagnant zone of domain w. This motion of the sector over the stagnant zone is represented in Pig. 13.

We shall examine another interesting case of stagnant zones having the character of cross members separating two or several regions of flow (Fig. 14). The existence of such stagnant zones follows from the exact solution constructed in the domain $A_{1} T R_{1}{ }^{\prime} A_{2}{ }^{\prime} S R_{2}$ presented in $\operatorname{Fig} .9$ and the majorizing principle. Additional examination of dimensions of the stagnant zone can be carried out by the method presented above. In conclusion we note a simple sufficient condition for the absence of a stagnant zone in the vicinity of a boundary point. If the boundary point can be touched by a circle of radius $2 \tau_{0} / c$ which is located completely in the domain w, then in the vicinity of this point a stagnant zone is not present. This sufficient condition is a trivial consequence of the majorizing principle and the exact solution examined in Section 2, point 1.

Appendix. At first we shall establish some auxiliary statements.

Definition. A function v_{0} which satisfies (1,2) gives weak minimum of functional (1.1) if for any smooth function $h,\left.n\right|_{r}=0$ there is a value λ_{0} such that all $\lambda,|\lambda| \leq \lambda_{0}$

$$
\begin{equation*}
J\left(v_{0}+\lambda h\right) \geqslant J\left(v_{0}\right) \tag{A.1}
\end{equation*}
$$

Lemma A.1. If v_{0} gives a weak minimum to functional (1.1), then $v_{0}=u_{0}$, where u_{0} is a function giving an absolute minimum to functional (1.1).

Pr 0 of. By virtue of convexity of runctional (1.1) we have the inequality

$$
\begin{equation*}
J\left(v_{0}+\lambda\left(v_{0}-u_{0}\right)\right) \leqslant J\left(v_{0}\right)+\lambda\left[J\left(u_{0}\right)-J\left(v_{0}\right)\right], \quad 0 \leqslant \lambda \leqslant 1 \tag{A.2}
\end{equation*}
$$

Let us select a smooth function $h,\left.h\right|_{\Gamma}=0$ and such that

$$
\begin{equation*}
\int_{\omega}\left\{\left|\nabla\left(h-\left(v_{0}-u_{0}\right)\right)\right|^{2}+\left|h-\left(v_{0}-u_{0}\right)\right|^{2} d \omega<\delta\right. \tag{A.3}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \quad\left|J\left(v_{0}\right)-J\left(v_{0}+\lambda\left(h-\left(v_{0}-u_{0}\right)\right)\right)\right|=\mid \int_{\omega}\left\{\lambda \mu \nabla\left(h-\left(v_{0}-u_{0}\right)\right) \nabla v_{0}+\right. \\
& +\lambda^{2} \frac{\mu}{2}\left|\nabla\left(h-\left(v_{0}-u_{0}\right)\right)\right|^{2}+\tau_{0}\left|\nabla v_{0}\right|-\tau_{0}\left|\nabla\left(v_{0}+\lambda\left(h-\left(v_{0}-u_{0}\right)\right)\right)\right|- \\
& \left.e \quad-c \lambda\left(h-\left(v_{0}-u_{0}\right)\right)\right\} d \omega \mid
\end{aligned}
$$

$$
\left|\int_{\omega}\left\{\left|\nabla v_{0}\right|-\mid \nabla\left(v_{0}+\lambda\left(h-\left(v_{0}-u_{0}\right)\right)\right)\right\}\right| d \omega\left|\leqslant|\lambda| \int_{\omega}\right| \nabla\left(h-\left(v_{0}-u_{0}\right)\right) \mid d \omega
$$

it therefore follows from (A.3) that

$$
\begin{equation*}
\mid J\left(v_{0}\right)-J\left(v_{0}+\lambda\left(h-\left(v_{0}-u_{0}\right)\right)|\leqslant|\lambda| \delta K\right. \tag{A.4}
\end{equation*}
$$

where K is independent of λ and δ. We have further from (A.2) that

$$
\begin{gathered}
J\left(v_{0}\right) \geqslant \lambda\left[J\left(r_{0}\right)-J\left(u_{0}\right)\right]+J\left(v_{0}+\lambda\left(v_{0}-u_{0}\right)\right) \geqslant \lambda\left[J\left(v_{0}\right)-J\left(u_{0}\right)\right]+ \\
+2 J\left(v_{0}+1 / z_{2} \lambda h\right)-J\left(v_{0}+\lambda\left(h-\left(v_{0}-u_{0}\right)\right) \geqslant \lambda\left[J\left(v_{0}\right)-J\left(u_{0}\right)\right]+\right. \\
+2 J\left(v_{0}+1 / 2 \lambda h\right)-J\left(v_{0}\right)-\mid J\left(v_{0}\right)-J\left(v_{0}+\lambda\left(h-\left(v_{0}-u_{0}\right)\right)\right] \geqslant \\
\geqslant \lambda\left[J\left(v_{0}\right)+J\left(u_{0}\right)\right]+2 J\left(v_{0}+1 / 2 \lambda h\right)-J\left(v_{0}\right)-\lambda K \delta
\end{gathered}
$$

Consequently

$$
J\left(v_{0}\right) \geqslant(1 / 2 \lambda)\left[J\left(v_{0}\right)-J\left(u_{0}\right)\right]+J\left(v_{0}+1 / 2 \lambda h\right)-1 / 2 \lambda K \delta
$$

If $J\left(v_{0}\right)>J\left(u_{0}\right)$ then δ can be selected so small that we will have $f\left(v_{0}\right)-J\left(u_{0}\right)>2 K 0$ then for all $\lambda(0 \leq \lambda \leq 1)$

$$
\begin{equation*}
J\left(v_{0}\right) \geqslant J\left(v_{\theta}+1 / 2 \lambda h\right) \tag{A.5}
\end{equation*}
$$

Inequality (A.5) contradicts (A.1); consequently $J\left(v_{0}\right)=J\left(u_{0}\right)$. From the theorem of uniqueness [1] it follows that $v_{0}=u_{0}$. The Lemma has been proven.

Lemma A2. If functional (1.1) has a critical point v_{0}, then $v_{0}=u_{0}$ where u_{0} is a function which minimizes functional (1.1).

Proof . Let v_{0} be a oritical point, then

$$
\begin{equation*}
\lim _{\lambda \rightarrow+0} \frac{J\left(v_{0}+\lambda\left(v_{0}-u_{0}\right)\right)-J\left(v_{0}\right)}{\lambda}=0 \tag{A.6}
\end{equation*}
$$

However, $J\left(w_{0}+\lambda\left(r_{0}-u_{0}\right)\right)=J\left(\lambda u_{0}+(1-\lambda) v_{0}\right) \leqslant \lambda J\left(u_{0}\right)+(1-\lambda) J\left(v_{0}\right)$,
i.e.

$$
J\left(v_{0}+\lambda\left(v_{0}-u_{0}\right)\right)-J\left(v_{0}\right) \leqslant \lambda\left[J\left(u_{0}\right)-J\left(v_{0}\right)\right]<0
$$

Consequently

$$
\lim _{\lambda \rightarrow+0} \frac{J\left(v_{0}+\lambda\left(u_{0}-v_{0}\right)\right)-J\left(v_{0}\right)}{\lambda} \leqslant J\left(u_{0}\right)-J\left(v_{0}\right)<0
$$

The last inequality contradicts (1.6), if $u_{0} \neq v_{0}$. Lemma $A 2$ is proven.
Lemma A3 (*) . For the inequality

$$
\begin{equation*}
\tau_{0} \int_{\omega}|\nabla h| d \omega+\tau_{0} \int_{\mathbf{r}} h d s \geqslant c \int_{\omega} h d \omega \tag{A.7}
\end{equation*}
$$

to be applicable for any smooth $h(x, y)$, it is necessary and sufficient

$$
1^{\circ} \tau_{0} \text { mes } \Gamma=c \text { mes } \omega, \quad 2^{\circ} \tau_{\theta} \text { mes } \Gamma^{\prime} \geqslant c \text { mes } \omega^{\prime}
$$

where, ω^{\prime} is an arbitrary sub-domain of domain ω and Γ^{\prime} is the boundary of $\omega^{\prime \prime}$.

Proof, Necessity, Condition follows from (A.7) if we write $h(x, y)=H$ is a constant. Let us examine an arbitrary sub-domain w^{\prime} of domain ω with the boundary Γ^{\prime}. Let r^{\prime} have a finite curvature in all points. Then in some neighborhood of this boundary 0_{1} (Γ^{\prime}) we can introduce a curvilinear system of coordinates using as one variable a the length of the arc along Γ^{\prime} and as the other, variable n the length of segment normal to Γ^{\prime}. The boundary of $O_{1}\left(\Gamma^{\prime}\right)$ is made up of lines $n_{1}(a)= \pm \alpha_{3}$. Let us assume that $\alpha_{,} \rightarrow 0$ for $f \rightarrow \infty$ and that Γ^{\prime} is imbedded in w together with $Q_{i}\left(\Gamma^{\prime}\right)$, starting with some J. Let us examine in ω the sequence of functions v^{\prime} equal to unity in $\omega^{\prime} \backslash O_{j}\left(\Gamma^{\prime}\right)$ and to zero in $\omega \backslash\left(\omega^{\prime} \cup O_{j}\left(\Gamma^{\prime}\right)\right)$. In $O_{j}\left(\Gamma^{\dagger}\right)$ function v_{j} is a monotonous function of variable n. Then

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\omega}\left|\nabla v_{j}\right| d \omega=\operatorname{mes} \Gamma^{\prime}, \quad \lim _{s \rightarrow \infty} \int_{\omega} v_{j} d \omega=\operatorname{mes} \omega^{\prime} \tag{A.8}
\end{equation*}
$$

Condition 2 of Lemma follows from (A.7) and (A.8). It is easy to see that the condition of finite curvature and imbedding are unessential. Necessity of conditions 1 and 2 is proven.

Sufficiency. It is sufficient to establish inequality (A.7) for arbitrary polynomials. Let $Q(x, y)$ be a polynomial; then it has only a finite number of level lines passing through singular points where $|(\nabla Q)|=0$. Level lines Q passing through singular points will be called singuiar, other level lines will be called nonsingular.

[^1]Let us examine a nonsingular line of level L_{ρ}, the value on which is equal to $\rho\left(Q\left(L_{\rho}\right)=\rho\right)$. In some vicinity of L_{0} we can introduce a curvilinear system of coordinates s and n in the manner indicated above. In this vicinity we take the level ine $L_{\rho+\Delta \rho}^{n}$, the equation for which is $n=n(s)>0$. It will be assumed here that for fixed s the quantity $O(n, s)$ is nondecreasing function of n for $Q \leq n \leq(s)$.

The set of points in the neighborhood under examination which belong to ω and are such that for them $0 \leq n \leq n(s)$, will be denoted by $\omega_{\rho, p+\Delta \rho}$. It is easy to see that the domain w can be stratified into sub-domains of the type $\omega_{0, p+\Delta n, ~ w i t h ~ a c c u r a c y ~ t o ~ a ~ p o l y n o m i a l ~ o f ~ a ~ d e g r e e ~ a s ~ s m a l l ~ a s ~}^{\text {a }}$ desired, 1 .é.

$$
\omega_{\varepsilon}=\bigcup_{\rho} \omega_{\rho, \rho+\Delta \rho}, \quad \operatorname{mes}\left[\omega \backslash \omega_{\varepsilon}\right]<\varepsilon
$$

where $\varepsilon \rightarrow 0$ for $n(s) \rightarrow 0$. Through K_{ρ} we designate a closed contour coinciding with L_{ρ}, if L_{ρ} is an oval lying in w and $K_{\rho}=L_{\rho}+\gamma_{\rho}$, and if L_{ρ} with its ends comes out on the boundary Γ of domain ω. Here γ_{ρ} is the part of boundary Γ which connects the ends of L_{ρ}, where $Q\left(\gamma_{\rho}\right) \geqslant \rho$. By ω_{p} we shall designate a sub-domain of ω which is bounded by contour $K_{\rho}{ }^{\circ}{ }^{\rho}$ Since

$$
\tau_{0} \text { mes } K_{\rho} \geqslant c \text { mes } \omega_{\rho}
$$

then

$$
\begin{equation*}
\tau_{0}\left[\operatorname{mes} L_{\rho}+\operatorname{mes} \gamma_{\rho}\right]\left[Q\left(L_{\rho i \cdot \Delta \rho}\right)-Q\left(L_{\rho}\right)\right] \geqslant c \operatorname{mes} \omega_{\rho}\left[Q\left(L_{\Delta \rho+\rho}\right)-Q\left(L_{\rho}\right)\right] \tag{A.9}
\end{equation*}
$$

We note that

$$
\tau_{0} \operatorname{mes} L_{\rho}^{+}\left[Q\left(L_{\rho+\Delta \rho}\right)-Q\left(L_{\rho}\right)\right]=\tau_{0} \int_{\omega_{\rho}, \rho+\Delta \rho} \frac{\partial Q}{\partial n} d n d s+O(n(s)) n(s)
$$

Summing (A.9) with respect to p we obtain

$$
\begin{gathered}
\sum_{\rho} \operatorname{mes} \omega_{\rho}\left[Q\left(L_{\rho+\Delta \rho}\right)-Q\left(L_{\rho}\right)\right]=\int_{\omega}\left\{Q(x, y)-\inf _{\omega} Q(x, y)\right\} d \omega+O(n(s)) \\
\sum_{\rho} \operatorname{mes} \gamma_{\rho}\left[Q\left(L_{\rho+\Delta \rho}\right)-Q\left(L_{\rho}\right)\right]=\int_{\Gamma}\left\{Q(x, y)-\inf _{\Gamma} Q(x, y)\right\} d s+O(n(s)) \\
\sum_{\rho} \operatorname{mes} L_{\rho}\left[Q\left(L_{\rho+\Delta \rho}\right)-Q\left(L_{\rho}\right)\right] \leqslant \int_{\omega}|\nabla Q| d \omega+O(n(s))
\end{gathered}
$$

Consequently,

$$
\tau_{0} \int_{\omega}|\nabla Q| d \omega+\tau_{0} \int_{\Gamma} Q d s \geqslant c \int_{\omega} Q d \omega+\tau_{0} \inf _{\Gamma} Q \operatorname{mes} \Gamma-c \underset{\omega}{\inf } Q \operatorname{mes} \omega
$$

From condition 1 of Lemma

$$
\tau_{\Gamma} \inf _{\Gamma} Q \operatorname{mes} \Gamma-c \inf _{\omega} Q \operatorname{mes} \omega \geqslant \inf _{\infty} Q\left[\tau_{0} \operatorname{mes} \Gamma-c \operatorname{mes} \omega\right]=0
$$

In this fashion Lemma A. 3 has been proven.
Let the domain ω be bounded by contour R and $R=\Gamma+Y$ where Y are some smooth curves consisting, generally speaking, of a finite number of connected components.

Lemma A. 4 . For the inequality

$$
\begin{equation*}
\tau_{0} \int_{\infty}|\nabla h| d \omega-\tau_{0} \int_{\gamma} h d s \geqslant c \int_{\omega} h d \omega \tag{A.10}
\end{equation*}
$$

to be satisfied for all smooth h, which become zero on Γ, the fulfillment of the following condition is necessary and sufficient: for any closed conof the $R^{\prime \prime}=\Gamma^{\prime}+Y^{\prime}$ lying in w where γ is part of γ the inequality

$$
\begin{equation*}
\tau_{0} \operatorname{mes} \Gamma^{\prime}-\tau_{0} \operatorname{mes} \gamma^{\prime} \geqslant c \operatorname{mes} \omega^{\prime} \tag{A.11}
\end{equation*}
$$

applies, where ω^{\prime} is a sub-domain of ω bounded by the contour R^{\prime}.
Pnoof. Necessity. In analogy to Lemma A. 3 we construct
a step-wise function which is the limit of v_{j}, equal to 1 in the domain ω^{\prime} and equal to zero outside the contour R^{\prime}., Substituting this function into (A.10) we obtain condition (A.11). We shall demonstrate this. Let Γ^{\prime} be a smooth curve; in its vicinity $0,\left(\Gamma^{\prime}\right)$ we shall introduce curvilinear coordinates (s, n). Boundary of $O_{j}\left(\Gamma^{\prime}\right)$ are the lines $h= \pm \alpha_{j}$ and $\alpha_{j} \rightarrow 0$ for $j \vec{~}^{\infty}$: Liet us examine a sequence of functions ${ }_{j}(x, y)$ which are equal to unity in $\omega^{\prime} \backslash Q_{j}\left(\Gamma^{\prime}\right)$ and to zero in $\omega \backslash\left[\omega^{\prime} \cup O_{j}\left(\Gamma^{\prime}\right)\right]$. In $O_{j}\left(\Gamma^{\prime}\right)$ functions v_{j} are monotone functions of variable n. Then

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{\omega}\left|\nabla v_{j}\right| d \omega=\operatorname{mes} \Gamma^{\prime}, \quad \lim _{j \rightarrow \infty} \int_{\gamma} v_{j} d s-\operatorname{mes} \gamma^{\prime}, \quad \lim _{j \rightarrow \infty} \int_{: 0} v_{j} d \omega=\operatorname{mes} \omega^{\prime} \tag{A.12}
\end{equation*}
$$

Comparing (A.12) with (A.10) we obtain (A.11). The necessary condition has been proven.

Sufficiency. We note [5] trat it is sufficient to establish the inequality (A.10) on functions (*) from $W_{p}{ }^{1}(\omega)(p>2)$ positive in ω and becoming zero on Γ. Let us approximate such a function by a polynomial $Q_{n}^{1}(x, y)$ in the metric $W_{D}^{1}(w)$. From theorems of imbeduing [5] it follows that $Q_{\mathrm{n}}{ }^{1}$ converges to h uniformly, i.e.

$$
\begin{equation*}
\left|Q_{n}^{1}-h\right|<\frac{1}{n}, \quad \int_{\omega}\left|\nabla\left(Q_{n}^{1}-h\right)\right| d \omega<\frac{1}{n} \tag{A.13}
\end{equation*}
$$

Let us examine the polynomial $Q_{\mathrm{a}}=Q_{\mathrm{n}}{ }^{1}-1 / n$. It is clear that $n_{1} \leq 0$ on Γ.

From the polynomial Q_{a} we make the transition to function Q_{2}^{*}

$$
Q_{n}^{*}=0 \quad \text { for } Q_{n} \leqslant 0, \quad Q_{n}^{*}=Q_{n} \quad \text { for } Q_{n}>0
$$

We shall demonstrate that for Q_{n}^{*} evaluations analogous to (A.13) are applicable. The set where $Q_{\mathrm{a}}^{*}=0^{\circ}$ is denoted by $S_{4}{ }^{\circ}$ Then $\left|Q_{\mathrm{a}}^{*}-h\right|<2 / n$ in $\omega>S_{n}$. Since $|n|<2 / n$ in the domain S_{F}, then $\left|Q_{\mathrm{n}}{ }^{*}-h\right|<2 / n$ in S_{n}. We shail ${ }^{n}$ demonstrate (**) that mes $\left\{S_{n} \cap \operatorname{supp} h\right\}^{\prime} \rightarrow 0$ for $n \rightarrow \infty$. Let us examine the set $\Lambda_{n}=\{(x, y)|h|<2 / n\} \cap \operatorname{supp} \phi$. Then lim $\Lambda_{\mathrm{a}}=\Phi$, where Φ is an empty set and $\Lambda_{n} \supseteq \Lambda_{n+1}{ }^{\prime}$ Consequentiy mes $\Lambda_{\mathrm{n}} \rightarrow 0$ for $n \rightarrow \infty$. But $\Lambda_{n} \supset S_{n} \cap \operatorname{supph} h_{n}$ In this manner mes $\left\{S_{n} \cap \operatorname{supp} h\right\} \rightarrow 0$ for $n \rightarrow \infty$. Thus it follows from (A.13) directly that

$$
\begin{equation*}
\left|h-Q_{n}^{*}\right| \rightarrow 0, \quad \int_{\infty}\left|\nabla\left(h-Q_{n}^{*}\right)\right| d \omega \rightarrow 0 \quad \text { for } n \rightarrow \infty \tag{A.14}
\end{equation*}
$$

Utilizing relationship (A.11) we establish the inequality (A.10) for Q_{a}^{*}. Let us examine a nonsingular line of polynomial Q_{a} in the domain ω / S_{a}.

As usual, we introduce curvilinear coordinates in the vicinity of this level line. In analogy to Lemma $A .3$ we stratify the domain $\omega \boldsymbol{S}_{\boldsymbol{n}}$ with accuracy to a set of degree ε on the sub-domain of the form $\omega_{\rho, p+\Delta \rho}$. We shall examine the contour K_{ρ}, which surrounds the domain ω_{ρ}, located in $\omega \backslash \dot{S}_{n}$. Then

$$
\tau_{0} \operatorname{mes} L_{\rho}-\tau_{0} \operatorname{mes} \gamma_{\rho} \geqslant c \operatorname{mes} \omega_{\rho}
$$

where γ_{ρ} is the part of contour K_{ρ}, which coincides with part Y. Then repeating the steps carried out in Lemma $A .3$ and noting that inf $Q_{0}=0$ on $\omega \backslash S_{n}$ and inf $Q_{n}=0$ on γ_{n} we arrive at the inequality

$$
\begin{equation*}
\tau_{0} \int_{\omega \backslash S_{n}}\left|\nabla Q_{n}\right| d \omega-\tau_{0} \int_{\gamma_{n}} Q_{n} d s \geqslant c \int_{\omega \backslash S_{n}} Q_{n} d \omega \tag{A.15}
\end{equation*}
$$

where γ_{n} is part of γ which is a piece of the boundary $\omega \backslash S_{n}$. Since $O_{n}{ }^{*}$ coincides with Q_{n} in $\omega \backslash S_{n}$ and is equal to zero on S_{B}, it follows from inequality (A.15) that

[^2]\[

$$
\begin{equation*}
\tau_{0} \int_{\omega}\left|\nabla Q_{n}^{*}\right| d \omega-\tau_{0} \int_{\gamma} Q_{n}^{*} d s \geqslant c \int_{\omega} Q_{n}^{*} d \omega \tag{A.16}
\end{equation*}
$$

\]

Relationship (A.10) follows from inequality (A.16) and relationships (A.14)

Proof of Theorem 1.1. Let us examine an increment of functional (1.1). Then

$$
\begin{gathered}
\Delta J=J\left(u_{0}+\lambda h\right)-J\left(u_{0}\right)= \\
=\int_{\omega}\left\{\left.\lambda \mu \nabla u_{0} \nabla h+\frac{\mu}{2}|\nabla h|^{2}+\tau_{0}\left|\nabla\left(u_{0}+\lambda h\right)\right|-\tau_{0} \right\rvert\, \nabla u_{0}-c \lambda h\right\} d \omega
\end{gathered}
$$

Let ω_{λ} denote a domain where $\left|\nabla u_{0}\right|>\lambda^{\alpha}, \alpha<1 / 2$. The increment ΔJ is written in the form

$$
\begin{gathered}
\Delta J=\int_{\omega}\left\{\lambda \mu \nabla u_{0} \nabla h+\frac{\mu}{2}(\nabla h)^{2}\right\} d \omega+\int_{\Omega} \tau_{0}|\lambda||\nabla h| d \omega+ \\
+\int_{\omega_{\lambda}} \tau_{0}\left\{\left|\nabla\left(u_{0}+\lambda h\right)\right|-\left|\nabla u_{0}\right|\right) d \omega+\int_{\omega} \tau_{0}\left\{\left|\nabla\left(u_{0}+\lambda h\right)\right|-\left|\nabla u_{0}\right|\right\} d \omega-\int_{\omega} c \lambda h d \omega \\
\omega_{0}=\omega \backslash\left(\omega_{\lambda} \cup \Omega\right)
\end{gathered}
$$

Noting that $\operatorname{mes}\left\{\omega \backslash\left(\omega_{\lambda} \cup \Omega\right)\right\} \rightarrow 0$ for $\lambda \rightarrow 0$ and that

$$
\left|\int_{\omega}\left\{\left|\nabla\left(u_{0}+\lambda h\right)\right|-\left|\nabla u_{0}\right|\right\} d \omega\right| \leqslant|\lambda| \int_{\omega}|\nabla h| d \omega
$$

we obtain

$$
\begin{align*}
\Delta J & =\int_{\omega}\left\{\lambda \mu \nabla u_{0} \nabla h-c \lambda h\right\} d \omega+\int_{Q} \tau_{0}|\lambda||\nabla h| d \omega+ \\
& +\int_{\omega_{\lambda}} \tau_{0}\left\{\left|\nabla\left(u_{0}+\lambda h\right)\right|-\left|\nabla u_{0}\right|\right\} d \omega+o(\lambda) \tag{A.17}
\end{align*}
$$

Transforming the last integral in (A.17)

$$
\begin{gathered}
\int_{\omega_{\lambda}}\left\{\left|\nabla\left(u_{0}+\lambda h\right)\right|-\left|\nabla u_{0}\right|\right\} d \omega=\int_{\omega_{\lambda}} \frac{\nabla u_{0} \nabla h}{\left|\nabla u_{0}\right|} d \omega+ \\
+\int_{\omega_{\lambda}} \frac{\lambda^{2}|\nabla h|^{2}}{\left|\nabla\left(u_{0}+\lambda h\right)\right|+\left|\nabla u_{0}\right|} d \omega+\int_{\omega_{\lambda}} \frac{\nabla u_{0} \nabla h\left\{-\lambda^{2}|\nabla h| 2-2 \lambda \nabla u_{0} \nabla h\right\}}{\left|\nabla u_{0}\right|| | \nabla\left(u_{0}+\lambda h\right)\left|+\left|\nabla u_{0}\right| \xi\right.} d \omega
\end{gathered}
$$

We apparently obtain

$$
\begin{gathered}
\int_{\omega_{\lambda}} \frac{\lambda^{2}|\nabla h|^{2}}{\left|\nabla\left(u_{0}+\lambda h\right)\right|+\left|\nabla u_{0}\right|} d \omega=o(\lambda) \\
\int_{\omega_{\lambda}} \frac{\nabla u_{0} \nabla h\left\{-\lambda^{2}|\nabla h|^{2}-2 \lambda \nabla u_{0} \nabla h\right\}}{\left|\nabla u_{0}\right|\left\{\left|\nabla\left(u_{0}+\lambda h\right)\right|+\left|\nabla u_{0}\right|\right\}} d \omega=o(\lambda)
\end{gathered}
$$

Then

$$
\int_{\omega_{\lambda}} \frac{\nabla u_{0} \nabla h}{\left|\nabla u_{0}\right|} d \omega=-\int_{\omega_{\lambda}}\left[\operatorname{div}\left(\frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}\right)\right] h d \omega+\left.\int_{S_{\lambda}} h\left(\frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}\right)\right|_{n} d s
$$

where S_{λ} is a contour surrounding ${ }^{\omega} \lambda,\left(\nabla u_{0} /\left|\nabla u_{0}\right|\right) l_{n}$ is the projection of the vector on the direction of the external normal to S_{λ}. In this manner

$$
\begin{aligned}
\Delta J=- & \int_{\omega_{\lambda}}\left\{\mu \Delta u_{0}+\tau_{0} \operatorname{div} \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}+c\right\} \lambda h d \omega-\int_{\Omega} c \lambda h d \omega+ \\
& +\int_{\Omega} \tau_{0}|\nabla \lambda h| d \omega+\left.\int_{S_{\lambda}} \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}\right|_{n} d s+o(\lambda)
\end{aligned}
$$

We note that if point S_{λ} for $\lambda \rightarrow 0$ approaches a point on the boundary a_{1} of the nucleus of flow A_{1}, then $\left(\nabla u_{0} /\left|\nabla u_{0}\right| \|_{n} \rightarrow 1\right.$; if however the point S_{λ} for $\lambda \rightarrow 0$ approaches a point on the boundary b_{1} of the stagnant zone B_{1}, then $\left.\left(\nabla u_{0} / \| \nabla u_{0} \mid\right)\right|_{n} \rightarrow-1$. Consequently,

$$
\left.\int_{S_{\lambda}} \frac{h \nabla u_{0}}{\left|\nabla u_{0}\right|}\right|_{n} d s-\left[\int_{\substack{\mathbf{S} \\ \mathbf{1} \\ a_{i}}} h d s-\int_{\bigcup_{1}^{p} b_{i}}^{\infty} h d s\right] \rightarrow 0 \quad \text { for } \lambda \rightarrow 0
$$

Thus,

$$
\begin{gather*}
\nabla J=-\int_{\omega_{\lambda}}\left\{\mu \Delta u_{0}+\operatorname{div} \frac{\nabla u_{o}}{\left|\nabla u_{0}\right|}+c\right\} \lambda h d \omega-\int c \lambda h d \omega-\int c \lambda h d \omega \\
\sum_{i=1}^{s}\left[\tau_{0} \int_{A_{i}}|\nabla \lambda h| d \omega+\tau_{0} \int_{a_{i}} \lambda h d s\right]+\sum_{i=1}^{p}\left[\tau_{0} \int_{B_{i}}|\nabla \lambda h| d \omega+\int_{b_{i}} \lambda h d s\right]+o(\lambda)(, \tag{A.18}
\end{gather*}
$$

We shall prove the necessity of conditions 1,2 and 3 of criterion. Let us take h, conventrated in ω_{λ}; then

$$
\begin{equation*}
\nabla J=-\int_{\omega_{\lambda}}\left\{\mu \Delta u_{0}+\operatorname{div} \frac{\nabla u_{0}}{\left|\nabla u_{0}\right|}+c\right\} \lambda h d \omega+o(\lambda) \geqslant 0 \tag{A.19}
\end{equation*}
$$

From (A.19) it follows that

$$
\begin{equation*}
\mu \nabla u_{0}+\operatorname{div}\left[\nabla u_{0} /\left|\nabla u_{0}\right|\right]+c=0 \text { в } \omega_{\lambda} \tag{A.20}
\end{equation*}
$$

Since λ in (A.20) is arbitrary, the necessity of 1 is proven. Consequently,

$$
\begin{align*}
& \nabla J=\sum_{1}^{s}\left[\tau_{0} \int_{A_{i}}|\nabla \lambda h| d \omega+\tau_{0} \int_{a_{i}} \lambda h d s-c \int_{A_{i}} \lambda h d \omega\right]+ \\
& +\sum_{1}^{p}\left[\tau_{0} \int_{B_{i}}|\nabla \lambda h| d \omega-\tau_{0} \int_{b_{i}} \lambda h d s-c \int_{B_{i}} \lambda h d \omega\right]+o(\lambda) \tag{A.21}
\end{align*}
$$

From (A.21) we have

$$
\begin{array}{ll}
\tau_{0} \int_{\mathbb{A}_{i}}|\nabla \lambda h| d \omega+\tau_{0} \int_{a_{i}} \lambda h d s-c \int_{A_{i}} \lambda h d \omega \geqslant 0 & (i=1, \ldots, s) \\
\tau_{0} \int_{B_{i}}|\Delta \lambda h| d \omega-\tau_{0} \int_{b_{i}} \lambda h d s-c \int_{B_{i}} \lambda h d \omega \geqslant 0 & (i=1, \ldots, p) \tag{A.22}
\end{array}
$$

Lemmas A. 3 and A. 4 confirm that conditions 2 and 3 of criterion result from inequality (A.22). The necessity of conditions is proven.

Sufficiency. Let conditions 1,2 and 3 of criterion be fulfilled. Then we have from Lemmas A. 3 and A. 4 and the representation of the reansformation of functional (A.18)

$$
J\left(u_{0}+\lambda h\right)-J\left(u_{0}\right)+o(\lambda) \geqslant 0
$$

From this it follows that u_{0} is either a critical point of functional (1.1) or it produces a weak minimum. From Lemmas A.1 and A. 2 it follows that u_{0} in these cases gives an absolute minimum of functional (1.1). The criterion has been proven.

Proof of f ($\mathrm{f} \mathrm{mma} \quad 1.1$. Functional $N(K)$ is bounded from below because inf $M(K) \geq-\operatorname{mes} D$. By virtue of compactness of a set of
curves with ilmited length there exists a contour K^{\prime} for which inf $N(K)=$ $=M\left(K^{\prime}\right)$. Evidently contour K^{\prime} is convex at internal points D. Let us examine three sufficiently closely situated intermal points $M_{1}^{\prime} ; M_{a}^{\prime}$ and M_{3}^{\prime} of region D. These points lie on contour K^{\prime} (Fig.15). It is further assumed that the arc $N_{1} \cdot N_{a}{ }^{\prime} M_{3}$ of contour K^{\prime} consists of internal points D. In this manner the segment $\left[M_{1}{ }^{\prime}, M_{3}{ }^{\prime}\right]$ is contained in the domain $K^{\prime *}$, bounded by contour K^{\prime}. Let K^{\prime} designate a domain enclosed between segment [$N_{1}{ }^{\prime}, N_{3}{ }^{\prime}$] and the arc $N_{1}{ }^{\prime} M_{2}^{\prime} N_{3}^{\prime}$. We shall also examine an arbitrary convex arc $N_{1} \cdot N_{2} N_{5}^{\prime}$ located in D. Let K_{1} " designate a sub-domain D, enclosed between the arc $N_{1}{ }^{\prime} \boldsymbol{N}_{2}{ }^{\prime} N_{3}$ ' and the segment $\left[N_{1}^{\prime}, N_{3}^{\prime}\right]$. Then it is easy to see that
Fig. 15

$$
\tau_{0} \operatorname{mes}\left(M_{1}^{\prime} M_{2}^{*} M_{3}^{\prime}\right)-c \operatorname{mes} K_{2}^{\prime \prime} \geqslant \tau_{0} \operatorname{mes}\left(M_{1}^{\prime} M_{2}^{\prime} M_{3}^{\prime}\right)-c \operatorname{mes} K_{1}^{\prime}
$$

Thus, if a new system of coordinates is introduced orienting the axis o_{x} along the segment $\left[N_{1}^{\prime}, N_{3}^{\prime}\right]$, the axis O_{x}, perpendicular and locating the origin in point $M_{1}^{\prime \prime}$ then the arc $N_{1}^{\prime}, N_{2}^{\prime}, N_{3}$ minimizes the integral

$$
\int_{0}^{\chi}\left(\tau_{0} \sqrt{1+y^{\prime 2}}-c y\right) d x \quad\left(\chi=\operatorname{mes}\left[M_{1}^{\prime} M_{8}^{\prime} 1\right]\right)
$$

for conditions $y(0)=0 ; y$ (mes $\left.\left[M_{1}^{\prime}, M_{3}^{\prime}\right]\right)=0$. It is easy to verify that extremals of functional (A.23) are peripneries with a radius T_{0} / c. Confirmation of contact between K^{\prime} and d can be obtained directiy utilizing the well-known theorem on one-sided variations [6]. Lemma 1.1 is proven.

BIBLIOGRAPHY

1: Mosolov, P.P. and Masnikov, V.P., Variataionnye metody v teoril techenil viazko-plasticheskoi sredy (Variational methods in the theory of flow of a viscous-plastis medium). PNW Vol.29, 3, 1965.
2. Buckingham, E., On plastic flow through capillary tubes. Proc.Am.Soc. Test.Mater., Vol.21, p.1154, 1921.
3. Volarovich, M.P. and Gutkin, A.M., Techenie plastichno-viazkogo tela mezhdu dvumia paralle1'nymi ploskims stenkami iv kol'tsevom prostranstve mezhdu dvumia koaksial nymi trubkami (Flow of a plastic-viscous body between two parallel flat walls and in the annular space between two coaxial tubes). Zh.tekh.Fiz.. Vol.16, 閣 3, 1946.
4. Bykovtsev, G.I. and Chernyshev, A.D., 0 viazko-plasticheskom techenii v nekrugovyki. tsilindrakh pri nalichil perepada davleniia (on viscousplastic flow in noncircular cylinders in the presence of pressure drop). PMTF NO 4, 1964.
5. Sobolev, S.L., Nekotorye primeneniia funktsional'nogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis in Mathematical Physics). Novosibirsk, Izd.Sib.Otd.Akad.Nauk SSSR, 1962.
6. El'sgol'ts, L.E., Variatsionnoe ischisienie (Variational Calculus). 2nd Edit.M., Gostekhizdat, 1958.
7. Kolmogorov, A.N. and Fomin, S.V., Elementy teorif funktsii 1 funktsional 'nogo analiza (Elements of Theory of Functions and Functional Analysis). Izd. MGU, 1954.

[^0]: *) Proofs of Theorems and Lemmas designated by an asterisk are given in the appendix.
 ${ }^{* *}$) By mes L, mes y and mes K^{*} the corresponding length of lines L and γ and the area of domain K are designated.

[^1]: *) Lemmas used in the proof ard notations $A \backslash B, A \cup B$ and $U_{p} A_{p}$ used in examinations below [7] as usual denote the difference in sets A and B, the sum of sets A and B and the sum of the family of sets A_{p}, respectively.

[^2]: *) The symbol $W_{D}{ }^{1}(w)$ denotes a set of runctions in the domain x which have first derivatives integrable with the degree p.
 **) The notation supp h as usual applies to the carrier of the function h, 1.e. the set of points of the plane where $h \neq 0$.

